Introduction to time and frequency

Peter Whibberley, NPL

- What is a clock?
- What is a time scale?
- The global reference time scale: UTC
- Traceability
- Equipment of a typical time laboratory

Applications of precise time and frequency

Telecommunications

Types of clock

ITU Handbook on Precise Time & Frequency Systems:

A time scale is a system of unambiguous ordering of events

A clock alone does not give a meaningful 'time'

A 'recipe' is needed for constructing a time scale

Astronomical time

Until 1967:

The Earth's rotation provided the reference for both frequency and time: "mean solar time"

Astronomical time

Universal Time

UT1 is still in use today

1955: start of atomic timekeeping

Parry and Essen with the NPL Cs frequency standard

Markowitz with a USNO moon camera

1967: Redefinition of the SI second

"The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom."

Coordinated Universal Time - UTC

- Introduced in 1961
- Atomic time scale for precise timekeeping
- Coordinated internationally
- The reference for time signals: radio broadcasts, navigation satellite systems, etc
- Kept in step with Universal Time (UT2, later UT1):
- Since 1 January 1972:
 - UTC adjusted occasionally by 1 s steps to remain within 0.9 s of UT1
 - "leap seconds"

UTC still forms the basis of precise timekeeping world-wide

Computed by the BIPM Bureau International des Poids et Mesures Located in Paris

- Processed monthly not available in real time
- Published in the BIPM *Circular T*
- Accessed through ~70 institutes that maintain physical UTC(k) time scales
- Provides frequency as well as time

SI unit of frequency: hertz (Hz) 1 Hz = 1/s

Institutes contributing to UTC

Institutes contributing to UTC

Introduction to time and frequency

BIPM Circular T results

UTC-UTC(*k*), Jan 2018 - Jan 2019

Traceability

Traceability is a property of measurements

A measurement is traceable if it is linked to the reference standard by a continuous chain of calibrations with known uncertainties

The uncertainty of a measurement is an evaluation of how close it is to the correct result

- statistical
- systematic

Typical UTC(k) time scale equipment

Caesium fountain primary frequency standard

Active hydrogen masers, caesium clocks

Typical UTC(k) time transfer equipment

Two-way satellite time and frequency transfer

Geodetic-quality GNSS time transfer receivers

Both methods can achieve ns-level time transfer and 10⁻¹⁵ frequency transfer over 1 day

Improved time & frequency transfer methods are needed

- Precise timekeeping globally is based on Coordinated Universal Time (UTC)
- Around 70 timing laboratories provide traceability to UTC through their UTC(k) time scales
- Existing time transfer methods based on satellite signals are a limitation
 development of fibre-based time transfer & dissemination methods

Thank you for your attention

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 731107

CLONETS – CLock NETwork Services

Strategy and innovation for clock services over optical-fibre networks

Proposal ID: **731107** Topic: **INFRAINNOV-2016** Duration: **30 months** Start date: **1st January 2017** Web page: **http://www.clonets.eu**

